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ABSTRACT

Let G be a supersolvable group and A be a conjugacy class of G.

Observe that for some integer η(AA−1) > 0, AA−1 = {ab−1 : a, b ∈ A}

is the union of η(AA−1) distinct conjugacy classes of G. Set CG(A) =

{g ∈ G : ag = a for all a ∈ A}. Then the derived length of G/CG(A) is

less or equal than 2η(AA−1) − 1.

1. Introduction

Let G be a finite group, A be a conjugacy class of G and e be the identity of G.

Let X be a nonempty G-invariant subset of G, i.e. Xg = {g−1xg : x ∈ X} = X

for all g ∈ G. Then for some integer n > 0, X is a union of n distinct conjugacy

classes of G. Set η(X) = n.

We can check that given any two conjugacy classes A and B of G, the product

AB = {ab : a ∈ A, b ∈ B} of A and B is a G-invariant set. Thus η(AB) is the

number of distinct conjugacy classes of G such that AB is the union of those

classes.

Denote by CG(A) = {g ∈ G : ag = a for all a ∈ A} the centralizer of the set

A in G. If G is a solvable group, denote by dl(G) the derived length of G. Let

Z(G) be the center of G.
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In this note, we are exploring the relations between the structure of the

group G and the product AB of some conjugacy classes A and B of G. More

specifically, we are exploring the relation between the derived length of some

section of G and properties of AB.

Given a finite solvable group G and conjugacy classes A and B of G, is there

any relationship between the derived length of G and η(AB)? In general, the

answer seems to be no. For instance, A{e} = A for any finite group G and any

conjugacy class A of G. Thus η(AB) may not give us information about dl(G),

but it does give us a linear bound on dl(G/CG(A)) when B = A−1 and G is

supersolvable. More precisely

Theorem A: For any finite supersolvable group G and any conjugacy class A

of G we have that

(1.1) dl(G/CG(A)) ≤ 2η(AA−1) − 1.

An application of this result is the following

Corollary B: For any finite supersolvable group and any conjugacy classes

A, B of G such that AB ∩ Z(G) 6= ∅, we have that

dl(G/CG(A)) ≤ 2η(AB) − 1.

We want now to point out the “dual” situation with characters.

Denote by Irr(G) the set of irreducible complex characters of G. We can check

that the product of characters is a character. Therefore, χψ is a character of

G for any χ, ψ ∈ Irr(G). It is known that a character can be expressed as an

integral linear combination of irreducible characters. Then the decomposition

of the character χψ into its distinct irreducible constituents θ1, θ2, . . . , θn has

the form

χψ =

n∑

i=1

miθi

where n > 0 and mi is the multiplicity of θi. Set η(χψ) = n, so that η(χψ) is

the number of distinct irreducible constituents of the product χψ. Define χ(g)

to be the complex conjugate χ(g) of χ(g) for all g ∈ G.

In Theorem A of [1], it is proved that there exist constants c and d such that

for any finite solvable group G and any irreducible character χ of G,

dl(G/Ker(χ)) ≤ cη(χχ) + d.
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If, in addition, G is a supersolvable group, then we may take c = 2 and d = −1.

We regard CG(A) for the conjugacy class A as the dual of Ker(χ) for a

character χ ∈ Irr(G), the conjugacy class A−1 for A as the dual of χ for the

character χ ∈ Irr(G). Thus we regard Theorem A as the dual in conjugacy

classes of Theorem A of [1] for supersolvable groups. In light of Theorem A of

[1], we wonder

Conjecture: There exist universal constants q and r such that for any finite

solvable group and any conjugacy class A of G, we have that

dl(G/CG(A)) ≤ qη(AA−1) + r.

We want to remark that there are several results showing the “duality” of

products of conjugacy classes and products of characters. For example, see [8],

[3] and [4], [6] and [5], [2] and [7]. However, we also want to remark that there

are results in products of conjugacy classes that do not hold true for the “dual”

in characters. For instance, it has been proved that the product of nontrivial

conjugacy classes in An, for n ≥ 5, is never a conjugacy classes (see [9]). On

the other hand, if n ≥ 5 is a perfect square, there exist irreducible characters χ

and ψ in An such that the product χψ is also an irreducible (see [10]).
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fessor Avinoam Mann for their suggestions to improve both the result and the

presentation of this note. I would like also to thank the Federal Emergency

Management Agency, FEMA, for providing me with temporary housing in the
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2. The function η

Let G be a finite group. Observe that if A is a conjugacy class of G, then for

any a ∈ A we have that A = aG = {ag : g ∈ G}.

In this section, we show that given a subgroup H with CG(a) ⊆ H ⊆ G, we

may not have a relation between η(aG(a−1)G) and η(aH(a−1)H).

Example 2.1: If H is a subgroup of G with CG(a) ⊂ H ⊆ G, then it is not

necessary that η(aG(a−1)G) ≥ η(aH(a−1)H).

Proof. Fix a prime p. Let GF(p) = {0, 1, . . . , p − 1} be a finite field with p

elements. Denote by F ∗ the group of units of GF(p). Also denote by F the
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additive group of GF(p). Observe that F ∗ acts on F by multiplication. Define

M to be the semi-direct product F o F ∗ of F by F ∗.

Let C = 〈c〉 be a cyclic group of order p and 1C be the identity of C. Let K

be the direct product of p-copies of C, i.e

K = C × · · · × C.

Thus K is an elementary abelian group of order pp. Given any a ∈ F and

any b ∈ F ∗, define the action of (a, b) ∈ M in GF(p) as x 7→ bx + a. With

the previous action, we can then define an action of M in K by permuting the

entries of the elements of K, i.e. given any k ∈ K, the action of (a, b) ∈ M is

that the i-th entry of k is the (bi+a)-th entry of the element (a, b)−1k(a, b) ∈ K.

Let G be the wreath product of C and M relative to GF(p), i.e. G = KoM .

Also, define H = K o F .

Set a = (c, 1C , . . . , 1C) in K. By Theorem A of [4], we have that η(aH(a−1)H)

= p. By Proposition 5.4 of [4], we have that η(aG(a−1)G) = 2.

Example 2.2: If H is a subgroup of G with CG(a) ⊆ H ⊂ G, then we need not

have η(aG(a−1)G) ≤ η(aH(a−1)H).

Proof. Let G be an extra-special group of exponent p and order p3, for some odd

prime p. Let a ∈ G\Z(G) andH = CG(a). We can check that η(aH(a−1)H) = 1

and η(aG(a−1)G) = p.

3. Proof of Theorem A

Hypotheses 3.1: Let G be a solvable group, N E G be a normal subgroup of

G, A be a conjugacy class ofG. Fix a ∈ A. Set C = CG(a). Since a ∈ A, observe

that aG = A and CG(A) = coreG(C). Set K̄ = (KN)/N for any subgroup of

K of G, and ḡ = gN for any element g ∈ G. Set CN = {g ∈ G : [a, g] ∈ N}.

Lemma 3.2: Assume Hypothesis 3.1. Then the set CN is a subgroup of G

containing CN , CN/N = CḠ(ā), and

(3.3) η(āḠ(ā−1)Ḡ) + η((aCN (a−1)CN )G) − 1 ≤ η(aG(a−1)G).

Proof. Let ρ : G → G/N be the homomorphism defined by ρ(g) = ḡ. We can

check that ρ(g) = ḡ ∈ CḠ(ā) if and only if [a, g] ∈ N , that is if and only if

g ∈ CN , i.e. ρ(aga−1) = ē if and only if g ∈ CN . Thus CN is the inverse image

of the group CḠ(ā) under ρ.
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Since ρ(aga−1) = ē if and only if g ∈ CN , we have

(
⋃

g∈CN

(aga−1)G) ∩ (
⋃

g∈G\CN

(aga−1)G) = ∅,

and

η(āḠ(ā−1)Ḡ) − 1 ≤ η(
⋃

g∈G\CN

(aga−1)G).

Observe that

aG(a−1)G = (
⋃

g∈CN

(aga−1)G) ∪ (
⋃

g∈G\CN

(aga−1)G).

Since ∪g∈CN
(aga−1)G = (aCN (a−1)CN )G, (3.3) follows.

Lemma 3.4: Let H and K be subgroups of G with K ⊆ H . Then

dl(coreG(H)/ coreG(K)) ≤ dl(H/ coreH(K)).

Proof. Since coreG(H) =
⋂

g∈GH
g, the map

ϕ : coreG(H) →
⊕

g∈G

Hg/ coreHg (Kg)

defined by ϕ(h) =
⊕

g∈G h coreHg (Kg) is well-defined. Observe that the kernel

of ϕ is

{h ∈ coreG(H) : h ∈ Kg for all g ∈ G} = coreG(K).

Thus coreG(H)/ coreG(K) is isomorphic to a section of
⊕

g∈GH
g/ coreHg (Kg)

and so

dl(coreG(H)/ coreG(K)) ≤ dl(
⊕

g∈G

Hg/ coreHg (Kg)).

Since Hg/ coreHg (Kg) is isomorphic to H/ coreH(K), then

dl(H/ coreH(K)) = dl(⊕g∈GH
g/ coreHg (Kg)),

and the result follows.

Lemma 3.5: Assume Hypothesis 3.1. Assume also that N is abelian. Then

(3.6) dl(CN/ coreCN
(C)) ≤ dl(CN/(CN ∩ CG(N))) + 1.

If, in addition, we have that N is a cyclic subgroup, then

(3.7) dl(CN/ coreCN
(C)) ≤ 2.



98 EDITH ADAN-BANTE Isr. J. Math.

Proof. Since CN = {g ∈ G : [a, g] ∈ N}, we have

(3.8) aCN (a−1)CN ⊆ N.

Set H = CN ∩ CG(N). Observe that Z(H) = Z(CN ∩ CG(N)) ⊇ N . By

(3.8), it follows that a ∈ Z2(H) and thus CH(a) ⊇ [H,H ]. Since H E CN ,

[H,H ] E CN . Since [H,H ] E CN and CH(a) = C ∩H ⊇ [H,H ], we have that

coreCN
(C) ∩CG(N) = coreCN

(C) ∩H ⊇ [H,H ]. Thus

(3.9) dl(H/(H ∩ coreCN
(C))) ≤ 1.

Then

dl(CN/ coreCN
(C)) ≤ dl(CN/H) + dl(H/(coreCN

(C) ∩H))

≤ dl(CN/H) + 1,
(3.10)

where the last inequality follows from (3.9).

If N is a cyclic group, then the group G/CG(N) is abelian and so

CN/H = CN/(CN ∩ CG(N)) is abelian. Thus (3.7) follows from (3.6)

Lemma 3.11: Let N be a normal subgroup of G and a ∈ G. Suppose that

η(āḠ(ā−1)Ḡ) = η(aG(a−1)G).

Then N ⊆ CG(a) = CN . In particular

dl(G/ coreG(CG(a))) = dl(Ḡ/ coreḠ(CḠ(ā))).

Proof. Since η(āḠ(ā−1)Ḡ) = η(aG(a−1)G), by Lemma 3.2 we have that

η((aCN (a−1)CN )G) = 1.

Since e ∈ aCN (a−1)CN and eG = {e}, it follows that aCN (a−1)CN = {e} and so

CN = CG(a). Since CN/N = CḠ(ā), the result follows.

Proof of Theorem A. We are going to use induction on η(AA−1)|G|. Observe

that the statement is true if η(AA−1) = 1, since in that case AA−1 = {e} and

thus CG(A) = G.

We are going to use the notation of Hypothesis 3.1, where N , in addition, is a

minimal normal subgroup of G. Thus A = aG and CG(A) = coreG(C). Lemma

3.2 implies that η(āḠ(ā−1)Ḡ) ≤ η(aG(a−1)G). Since |Ḡ| < |G|, by induction we

have that

(3.12) dl(Ḡ/ coreḠ(CḠ(ā))) ≤ 2η(āḠ(ā−1)Ḡ) − 1.
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Observe that Ḡ/ coreḠ(CḠ(ā)) is isomorphic to G/ core(CG(CN )). Therefore

(3.13) dl(G/ core(CG(CN )) = dl(Ḡ/ coreḠ(CḠ(ā))).

Assume that coreG(CN ) = coreG(C). Then G/ coreG(C) is isomorphic to the

group Ḡ/ coreḠ(CḠ(ā)). By (3.12), (3.13) and Lemma 3.2, we have

dl(G/ coreG(C)) = dl(Ḡ/ coreḠ(CC̄(ā))

≤ 2η(āḠ(ā−1)Ḡ) − 1 ≤ 2η(aG(a−1)G) − 1.

We may assume then that coreG(C) is a proper subset of coreG(CN ). Observe

that then C is properly contained in CN and therefore, by Lemma 3.11, we

must have that

η(āḠ(ā−1)Ḡ) < η(aG(a−1)G).

So η(āḠ(ā−1)Ḡ) + 1 ≤ η(aG(a−1)G). Since G is supersolvable, N is cyclic. By

Lemma 3.4, (3.7), (3.12) and (3.13) we have that

dl(G/ coreG(C)) ≤ dl(G/ coreG(CN )) + dl(coreG(CN )/ coreG(C))

= dl(Ḡ/ coreḠ(CḠ(ā))) + dl(coreG(CN )/ coreG(C))

≤ [2η(āḠ(ā−1)Ḡ) − 1] + 2

≤ 2(η(aG(a−1)G) − 1) − 1 + 2

≤ 2η(aG(a−1)G) − 1.

The proof is now complete.

4. Proof of Corollary B

Lemma 4.1: Let G be a finite group, A and B be conjugacy classes of G such

that AB ∩ Z(G) 6= ∅. Then η(AB) = η(AA−1).

Proof. Since AB ∩Z(G) 6= ∅, there exist some z ∈ Z(G), a ∈ A and b ∈ B such

that z = ab. Thus b = a−1z and so AB = aGbG = aG(a−1z)G = (aG(a−1)G)z =

ABz. It follows then that η(AB) = η(AA−1).

Corollary B follows from Lemma 4.1 and Theorem A.
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