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ABSTRACT

Let G be a supersolvable group and A be a conjugacy class of G.
Observe that for some integer n(AA™1) > 0, AA™! = {ab™1: a,b € A}
is the union of n(AA~!) distinct conjugacy classes of G. Set Cg(A) =
{g € G: a9 =aforalla € A}. Then the derived length of G/Cg(A) is
less or equal than 2n(AA~1) — 1.

1. Introduction

Let G be a finite group, A be a conjugacy class of G and e be the identity of G.
Let X be a nonempty G-invariant subset of G, i.e. X9 ={g lzg: 2 € X} = X
for all g € GG. Then for some integer n > 0, X is a union of n distinct conjugacy
classes of G. Set n(X) = n.

We can check that given any two conjugacy classes A and B of G, the product
AB = {ab: a € A,b € B} of A and B is a G-invariant set. Thus n(AB) is the
number of distinct conjugacy classes of G such that AB is the union of those
classes.

Denote by Cg(A) = {g € G: a? = a for all a € A} the centralizer of the set
Ain G. If G is a solvable group, denote by d1(G) the derived length of G. Let
Z(QG) be the center of G.
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In this note, we are exploring the relations between the structure of the
group G and the product AB of some conjugacy classes A and B of G. More
specifically, we are exploring the relation between the derived length of some
section of G and properties of AB.

Given a finite solvable group G and conjugacy classes A and B of G, is there
any relationship between the derived length of G and n(AB)? In general, the
answer seems to be no. For instance, A{e} = A for any finite group G and any
conjugacy class A of G. Thus n(AB) may not give us information about dl(G),
but it does give us a linear bound on dl(G/Cg(A)) when B = A~ and G is
supersolvable. More precisely

THEOREM A: For any finite supersolvable group G and any conjugacy class A
of G we have that

(1.1) dl(G/Cg(A)) < 2p(AA™H) — 1.
An application of this result is the following

COROLLARY B: For any finite supersolvable group and any conjugacy classes
A, B of G such that ABNZ(G) # 0, we have that

dI(G/Ca(A)) < 2(AB) - 1.

We want now to point out the “dual” situation with characters.

Denote by Irr(G) the set of irreducible complex characters of G. We can check
that the product of characters is a character. Therefore, x1) is a character of
G for any x, 9 € Irr(G). It is known that a character can be expressed as an
integral linear combination of irreducible characters. Then the decomposition
of the character yt into its distinct irreducible constituents 64, 6s,..., 6, has
the form

XY = Z m;0;
i=1

where n > 0 and m; is the multiplicity of ;. Set n(xv¥) = n, so that n(xy) is
the number of distinct irreducible constituents of the product . Define X (g)
to be the complex conjugate @ of x(g) for all g € G.

In Theorem A of [1], it is proved that there exist constants ¢ and d such that

for any finite solvable group G and any irreducible character x of G,

dI(G/ Ker(x) < en(x) + d.
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If, in addition, G is a supersolvable group, then we may take ¢ = 2 and d = —1.

We regard Cg(A) for the conjugacy class A as the dual of Ker(y) for a
character y € Irr(G), the conjugacy class A=! for A as the dual of ¥ for the
character x € Irr(G). Thus we regard Theorem A as the dual in conjugacy
classes of Theorem A of [1] for supersolvable groups. In light of Theorem A of
[1], we wonder

CONJECTURE: There exist universal constants q and r such that for any finite
solvable group and any conjugacy class A of G, we have that

dl(G/Cg(A)) < qn(AA™Y) + .

We want to remark that there are several results showing the “duality” of
products of conjugacy classes and products of characters. For example, see [§],
[3] and [4], [6] and [5], [2] and [7]. However, we also want to remark that there
are results in products of conjugacy classes that do not hold true for the “dual”
in characters. For instance, it has been proved that the product of nontrivial
conjugacy classes in A, for n > 5, is never a conjugacy classes (see [9]). On
the other hand, if n > 5 is a perfect square, there exist irreducible characters x
and v in A, such that the product x is also an irreducible (see [10]).
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presentation of this note. I would like also to thank the Federal Emergency
Management Agency, FEMA, for providing me with temporary housing in the
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2. The function 7

Let G be a finite group. Observe that if A is a conjugacy class of G, then for
any a € A we have that A = a% = {a9: g € G}.

In this section, we show that given a subgroup H with Cg(a) C H C G, we
may not have a relation between 7n(a%(a=1)%) and n(a® (a=1)H).

Example 2.1: If H is a subgroup of G with Cg(a) C H C G, then it is not
necessary that n(a%(a=1)%) > n(a (a=1)H).

Proof. Fix a prime p. Let GF(p) = {0,1,...,p — 1} be a finite field with p
elements. Denote by F* the group of units of GF(p). Also denote by F' the
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additive group of GF(p). Observe that F* acts on F' by multiplication. Define
M to be the semi-direct product F' x F* of F' by F*.

Let C = {c) be a cyclic group of order p and 1¢ be the identity of C'. Let K
be the direct product of p-copies of C, i.e

K=Cx---xC.

Thus K is an elementary abelian group of order p?. Given any a € F and
any b € F*, define the action of (a,b) € M in GF(p) as z — bx + a. With
the previous action, we can then define an action of M in K by permuting the
entries of the elements of K, i.e. given any k € K, the action of (a,b) € M is
that the i-th entry of k is the (bi+a)-th entry of the element (a,b) " *k(a,b) € K.

Let G be the wreath product of C' and M relative to GF(p), i.e. G = K x M.
Also, define H = K x F.

Set a = (¢,1¢,...,1¢) in K. By Theorem A of [4], we have that n(af (a=1))
= p. By Proposition 5.4 of [4], we have that n(a%(a= 1)) =2. &

Example 2.2: If H is a subgroup of G with Cg(a) C H C G, then we need not
have 1(a(a=")%) < n(a” (a=")").

Proof. Let G be an extra-special group of exponent p and order p3, for some odd
prime p. Let a € G\Z(G) and H = Cg(a). We can check that n(a (a=1)) =1
and n(a®(@ )% =p. 1

3. Proof of Theorem A

HypPOTHESES 3.1: Let G be a solvable group, N < G be a normal subgroup of
G, A be a conjugacy class of G. Fixa € A. Set C = Cg(a). Sincea € A, observe
that a® = A and Cg(A) = coreg(C). Set K = (KN)/N for any subgroup of
K of G, and g = gN for any element g € G. Set Cy ={g € G: [a,g] € N}.

LEMMA 3.2: Assume Hypothesis 3.1. Then the set Cy is a subgroup of G
containing CN, Cn /N = Cx(a), and

(33) (@ (@ ")) +n((@™ (@))% -1 < nla@")%).

Proof. Let p: G — G/N be the homomorphism defined by p(g) = g. We can
check that p(g) = g € Cx(a) if and only if [a,g] € N, that is if and only if

g € Oy, ie. p(aa=?t) = éif and only if g € Cy. Thus C is the inverse image
of the group Cx(a) under p.
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Since p(aa~1) = é if and only if g € Cy, we have
(U @aH)n( J (%) =0,
geCn geG\Cn

and

Observe that
o= (J (@aHu( [J @ah)9).
geCn geG\Cn
Since Ugecy (a%9a™1)C = (a“V (a=1)ON)E | (3.3) follows. B
LEMMA 3.4: Let H and K be subgroups of G with K C H. Then
dl(coreg(H)/ coreq(K)) < dI(H/ corey (K)).

Proof. Since coreg(H) =(),cq H?, the map

geG
¢ :coreg(H) — @Hg/coreHg(Kg)
geG

defined by ¢(h) = @, .4 h corems (K9) is well-defined. Observe that the kernel

geG
of ¢ is
{h € coreq(H): h € K9 for all g € G} = coreq(K).
Thus coreg(H)/ coreg(K) is isomorphic to a section of P .o H?/ coreys (K7)

and so

dl(coreg(H)/ coreg(K)) < dl(@ HY/ coregq (K7)).
geG
Since HY/ corepq (K9) is isomorphic to H/ corep (K), then

dl(H/ corey (K)) = dl(DgecH?/ coreps (K9)),
and the result follows. ]
LEMMA 3.5: Assume Hypothesis 3.1. Assume also that N is abelian. Then
(3.6) dl(Cn/ corecy (C)) < dI(Cn/(Cn N Ca(N))) + 1.
If, in addition, we have that N is a cyclic subgroup, then

(3.7) dl(Cn/ corec,, (C)) < 2.
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Proof. Since Cy = {g € G: [a,g] € N}, we have
(3.8) a®~ (a=hY C N.

Set H = Cy N Cg(N). Observe that Z(H) = Z(Cy N Cg(N)) 2 N. By
(3.8), it follows that a € Zo(H) and thus Cg(a) 2O [H, H|. Since H < Cy,
[H,H] 9 Cy. Since [H,H] < Cn and Cpg(a) = C N H D [H, H], we have that
corecy (C) N Cg(N) = corec, (C)NH D [H, H|. Thus

(3.9) dI(H/(H N corec, (C))) < 1.

Then

dl(Cn/ corecy (C)) < dl(Cn/H) + dl(H/(corec, (C) N H))

<dl(Cn/H)+1,

(3.10)

where the last inequality follows from (3.9).
If N is a cyclic group, then the group G/Cg(N) is abelian and so
Cn/H = Cn/(Cny N Cg(N)) is abelian. Thus (3.7) follows from (3.6) n

LEMMA 3.11: Let N be a normal subgroup of G and a € G. Suppose that

n(@ (@ )®) = n(a @),
Then N C Cg(a) = Cn. In particular
dl(G/ coreg(Cg(a))) = dI(G/ coreq(Cg(a))).
Proof. Since n(a®(@=1)%) = n(a®(a1)%), by Lemma 3.2 we have that
M((@ (@))% = 1.
Since e € a“V (a71)®~ and ¢ = {e}, it follows that a®~(a=1)“~ = {e} and so

Cn = Cg(a). Since Cn /N = Cgx(a), the result follows. |

Proof of Theorem A. We are going to use induction on n(AA~1)|G|. Observe
that the statement is true if n(AA~!) = 1, since in that case AA™! = {e} and
thus Cg(A4) = G.

We are going to use the notation of Hypothesis 3.1, where IV, in addition, is a
minimal normal subgroup of G. Thus A = a¥ and Cg(A) = coreg(C). Lemma
3.2 implies that 1(a%(a=1)%) < n(a®(a~1)%). Since |G| < |G|, by induction we
have that

(3.12) dl(G/ cores(Ca(a))) < 2n(a(a)%) — 1.



Vol. 168, 2008 DERIVED LENGTH AND CONJUGACY CLASSES 99

Observe that G/ cores (Cg(a)) is isomorphic to G/ core(Cg(Cy)). Therefore
(3.13) dl(G/ core(Cg(Cn)) = dI(G/ coreq(Cg(a))).

Assume that coreq(Cn) = coreg(C). Then G/ coreq(C) is isomorphic to the
group G/ coreq(Cg(a)). By (3.12), (3.13) and Lemma 3.2, we have

dl(G/ coreg(C)) = dI(G/ coreq(Cq(a))
< 2n(@(@)®) -1 < 2@ %) - 1.
We may assume then that coreg(C) is a proper subset of coreg(Cn). Observe

that then C is properly contained in Cy and therefore, by Lemma 3.11, we
must have that

(@@ "% < naa@)%).
So n(a® @)% +
Lemma 3.4, (3.

)+ 1 < n(a®(@1)%). Since G is supersolvable, N is cyclic. By
7), (3.12) and (3.13) we have that

dI(G/ coreg(C)) <

The proof is now complete. i

4. Proof of Corollary B

LEMMA 4.1: Let G be a finite group, A and B be conjugacy classes of G such
that ABNZ(G) # 0. Then n(AB) = n(AA~1).

Proof. Since ABNZ(G) # 0, there exist some z € Z(G), a € A and b € B such
that 2 = ab. Thus b = a~'z and so AB = a%b% = a%(a~12)¢ = (a%(a™1)%)z =
ABz. Tt follows then that n(AB) =n(AA~Y). &

Corollary B follows from Lemma 4.1 and Theorem A.
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